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PROPERTIES OF EVEN-LENGTH BARKER CODES
AND SPECIFIC POLYPHASE CODES WITH

13 ADVCD TV017 AITTfrlCfDCDi ArTrlNT lVTTMCTTflNT
J1.XJL2:JLLiXA% X A A xL .CttJ LAt F../FA.FfLXJ4JJJL LX-F a .1 L sJl 11 -- ,A JAJ L

INTRODUCTION

A Barker code is a sequence of N numbers xi (where xi= ± 1), which has the following auto-
correlation function:

N for K = 0N-K
R(K)= Zx x;+& k (Ia)

or ItforK= 1, 2, (N-lj

i.e., the "time sidelobes" in the autocorrelation function do not exceed the level of 1.

In radar applications, the sequence modulates the phase of the signal (some constant carrier fre-
quency) from code element to code element. For a stationary target the above property (la) holds, but
now, since the time variable is continuous, we get small triangles in the autocorrelation function whose
peaks are 0 or t 1, and a big triangle whose peak is N (the match point). For a moving target we actu-
ally have the crosscorrelation function of the transmitted code and the target return, resulting in higher
sidelobes. Only the autocorrelation function will be considered here.

The known code lengths having the property of Eq. (la) are 2, 3, 4, 5, 7, 11, 13 [1].

It has been shown that no Barker code of odd length exists for N > 1I. Aiso, if an even-lenoth
Barker code exists, it must be a perfect square 121, i.e., N = 12, Since Nis even, I is also even.

The purpose here is to investigate the possibility of even-length Barker codes greater than the
known of length 2 (+ + and - +) and 4 (+ + - + ++++ -). Possible candidates for this are, for
example, lengths of 16, 36, 64, 100, etc., but is was verified [21 that up to N= 6084 (1 78) no
Barker code exists.

If xi is not restricted to +1, -1, but can be any complex number whose magnitude is unity
IY. 1 then the n11tnrnrrlAtionn functtinn is rrnuuir-prl Eo fulfill

N for K 0
N-K

R (K} - ExiXP+k= or < unity m'cagnitude (lb)

jfor K = 1, 2, . N-I

In general, R (K) is a complex number. The complex conjugate is denoted by '.

DEFINITION (for convenience): A code with property (Ib) is a polphode. It is actually a
polyphase code with Barker type autocorrelation function (excluding the real Barker codes). Specific
types of polphodes are the generalized Barker codes [31 which are derived from a "father" real Barker
code. These will be discussed later

Manuscript submitted February 9, 1982.
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The following analysis will investigate the properties of even-length Barker codes and polphodes
(where N = 2, N and l ate even), if they exist. The analysis of Barker codes (for which Turyn [21 con-
siders evidence overwhelming that they do not exist) will lead to the analysis of the general case of pol-
phodes.

GENERAL ANALYSIS: SPECTRUM

The general description of a phase-coded signal is shown in Fig. 1. We are interested in a cQn-
stant amplitude code; thus, without loss of generality, we assume its amplitude is 1, and its carrier fre-
quency is constant fo.

+1 +2 +3 +* +i N

1 _ _ _ _ _ _ _ xi1I elt=¶ I
1 ih CODE 'ELEMENT

_ LL iLJb= T COMPLEX ENVELOPE

T
Fig. 1 - General description of a phase-coded signal

The signal duration T is divided into N code elements, each of TIN duration, and each code ele-
ment has phase 4, (for Barker codes 4, can take only 0, n values corresponding to real x* which equal
+1, -I in the sequence), where i - 1, 2, ... , N For polphodes, chi can take any value resulting in a
complex sequence xi. We will specify the restrictions on (4, whenever they apply.

Taking out the carrier frequency, the complex envelope of each code element is t1 = e T* he
analysis from now on will be carried out with the complex envelope.

The spectrum of the signal is

S(f)=Z St(f), (2)
i=l

where S,(f) is the spectrum of the 1Zh code element:

= £ Si (I) ej2 f"d = f ST(tej2rftdt (3)

S( = S Ns 1 (r)ekj2 ,ftd + 4 s 2 (t)e-J2 rftd +...

T+ SN lW e-j'7rfdt (4

and after a change of variables in the integrals (in order to have the same limits in each one)
T T Tf-

Sef) = Al eJie-J2fftdt + e ' X N JN e2J2 e-,2ftd
-2f 2T r

+ e ejA, 2eJA drf + ' 

2



NRL REPORT 8586

S(f) =- I2t {{ej' jI e- cJ27rfT/NJ + ej2 -e-j21rfTfN)e-jirfT/N

+ e- Air-ee2r I/jeI2'2-j T/N + . . (6)

Stf) _ j1 - 2irfT/N ?t 1 + j(02-2vrT/N)
-j2rrf JI +

+ eJ( 3 -2wf2T/N) + (7)

=-j2irfT2N I1 T sin (2%rT/2N) fAbove r4
SOf = eJ wf/2 .t IV if /r '"l (8)2 NJ 27rf - T12N ersi

define

27rf *i = (9)

and tp is a scaled frequency variable. Then,

8(f) = I'T] Ci@§!-$2rjej'A'1 + eJ'(02 2@)

|2NJ +I

+ e"03-4*) + + e i [-(N-1)2@lJ (10)

This is the baskc speluu urn expression that we will utilize through the analysis. The sin yp/'$ term
in Eq. (10) is due the basic code element length TIN, and the terms in the right bracket are due to the
phase coding inside the code.

If the signal bandwidth is B, and we sample it at the Nyquist rate, then TIN = 1/B (this is
because in general we use I and Q processing, which requires sampling at once, and not twice, the
reciprocal of the bandwidth). In this case q/ = 7rf/B and (-1/2) TIN = -1/2B. But we will proceed
with the general analysis.

The nower qnectrinm is

Is f)12 = SV) Shy). (11)

and it is the Fourier transform of the autocorrelation function. Note that IS(f) 12 is always a real func-
tion of f, and R CT) is an even function of r for real codes, while R (T) = R*(-T) for complex codes.

To see this relation in the discrete phase code, let us examine in detail Barker codes of lengths 7
and 4.

BARKER CODE 7

This code is known to be:

+ + +- _ + -

4, 0f 0o 0o r r 0o r

3
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Notice here that changing the signs of all the code elements does not change the property of the
autocorrelation function. This means that one can choose arbitrarily the sign of the first code element.
This is true for any Barker code. and polohode. and we will choose the first code element to be xl +-

(or equivalently 4, = QO) from now on, unless otherwise stated.

The autocorrelation function is shown in Fig. 2 (where r = K -,K = 0, 1, ... , N - 1>.
Al

/

/

/

I 

A

WR(T

CORRELATION PEAK AS RESULT
OF 7 TERM IN THE POWER SPECTRUM

TIME SIDE LOBES
AS RESULT OF

4W

\ z•IZI

[A-

-t5 \P3V1_1

/ 8W

1 2y / 6 /10w /
I. t I If

L v 3 vB
T = K-

(12ab

.. . ..

(12b) . ~~~~~~~~~~~~~. .-.

.

....

-

.

. . ...

....

tI3} ' ":-.
l

.9
MATCH POINT

(PEAK OF CORRELATION)

Fig. 2 - Autocorrelation function of Barker code 7

According to Eq. (10), substituting the known 4,i for this code we get:

8f = T- I"1 e- sin [I + eCh' + e-J4th - CJ6* - er- + e-- C-e-12f

and

S- W = | T } eO !'L 11 + e12@ + ej4 - -6, e- 8 + e)1° - e12*1.
' )*' ATftr

Carrying out the multiplication of Eqs. (12a) and (12b), we get:

[80f)12 - S(f) St( f) _ -r sin*4 .[- -~ -- ec" 2" -IZ eit~I 2-,2 4N2 = f . | s*n I | 7 - e-4eie-8 - ejaP _ e~f2 - e 2*

=r f sin@ 1 12
=4N2 j i17P- 2 cos 4t -2 cosst;- 2 cosl12tkI.

We see in Eq. (13) the Fourier transform relation between [S) 12 and the autocorretation func-
tion; the 7 term in the square bracket of Eq. (13) gives the correlation peak. (The triangle, whose

width is one code element TIN, is the result of the lSH1 term, as known by Fourier transform
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theory.) The three sidelobes (on each side of the match point) are the result of the 2 cos 44, 2 cos 84i,
2 cos 124; terms in Eq. (13), (for convenience, we will call these terms in I1S (12 "pseudo-
frequencies," though we should remember that they don't represent frequencies of the spectrum, since
the spectrum is actually continuous); these "pseudo-frequencies" give impulses when transformed.

When these impulses are convolved with the triangles due to [i, I , they give the triangle-shaped

sidelobes on each side of the match point. Note that the amplitudes of the cosine terms in Eq. (13) are
2, but in the transform process each cosine appears as 2 impulses whose amplitudes are 1, so that the
amplitudes of the sidelobes are 1 in this specific code. Note also that the sign of the "pseudo-
frequencies" determines the sign of the sidelobe (in this example, all the sidelobes are negative).

Note also that for this example, the multiplication of S(f) by S*(f) caused several e j2On terms
of the spectrum. to diqnnnenr; here the ecj2', e-j6 o and e0W1 0 0 terms of the spectrum disappeared after
the multiplication, resulting in zero level sidelobes at the corresponding locations of the autocorrelation
function (see Fig. 2).

It is clear that the last term of the spectrum (generally e-i(N- 1)2@, and here e-i12@) will never
disappear after the multiplication (since no other term can cancel it), corresponding to the fact that the
furthest sidelobe of such code is always +1 or -1.

Clearly, these observations will hold for any phase-coded signal with unity amplitude (e.g.,
polyphase codes like Frank codes), but to any sidelobe in the autocorrelation, say of g magnitude, there
will be a corresponding 2g cos (K . 24; + o) "pseudo-frequency" in the power spectrum. Generally g
can be bigger than 1 but for poiphodes g is required to be smaller than 1 (0 is some angle that depends
on the code).

To show this process for even-length codes, examine the Barker code of length 4. It is known
that there are two possibilities which we designate as Barker Codes 4A and 4B.

BARKER CODE 4A

~;0 0 0 7r

The autocorrelation function is shown in Fig. 3:

S(1) = [|-T j e-J [ si, ' + e±j2 + + -1 4@ - e-6j, (14a)

| 2N= e |iti1 El + eJ2' + e24'-e161, (14b)
a S 

and

IS(f)12 =5f) 5* () [ s I in j2 [4 + 2 cos 24;- 2 cos 6q4. (15)

Again, the autocorrelation function corresponds to the "pseudo-frequencies" of the power spec-
trum in Eq. (15); the match point is 4, the first sidelobe is +1, the second sidelobe is -1, and the
cos 44 term is missing, resulting in zero level at the corresponding point of Fig. 3 (K = 2).

Note that here, for an even length code, the signs of the "pseudo-frequencies" cos 24;, cos 64, are
opposite, which results in opposite sign sidelobes in R (lr. This property is true for any even-length
(N - 12) Barker code [1], that means;

5
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R(TI

RESULT OF

" -2 -1j1 1 ° 2 V X(1)

Fig. 3 - Autocorretation function of Barker code 4A

TrK NN

RW) + R(N -X=O (1 
for any K = 1, 2. N - 1, or equivalently, in [ (f) 2 we will have for any ± 2 cosK Kr term a
corresponding 72 cos (N - K)24, term, such that their signs are opposite. This also means that

RI4= 2l = 0 since the point K does not have an 'image." Figure 4 shows the image structure
2 T.Tepit =1ith itof =- = 2 m

of R ). The point K=1 is the 'image!'of K= N -I, K= 2 is the 'image of K=-N- 2, etc,

t RIO)

4

"IMAGES"

1¶23

R (K =0) =N

N

RIK = - =0
2

T = KT
N-2 N- IX

( TN )

Fig. 4 - Image structure of the autocorrelation function of an even-length Barker code

BARKER CODE 4B

f: 0 0 ir 0

8() = (- I e-i' [si [i + e-J2* - eJ 4 + e-± Z

8*(f) = J eS [sin 1 + el - ej4 ± e164l

and

[8 V= r2 11 l 12 [4 2cos2 + 2cos 6if}
4N2' 4 
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The correlation function is shown in Fig. S. Figure 5 is "similar" to Fig. 3. But now in the power
spectrum (Eq. (18)), the 2 cos 24;, 2 cos 64; terms both have changed signs when compared to Eq.
(15), so that Eq. (16) is fulfilled. This caused the sidelobes in Fig. 5 to change signs when compared to
Fig. 3.

MtRT

4

3

-3 2 3

Fig. 5 - Autocorrelation function of Barker code 4B

Note that Eq. (16) does not hold generally for polphodes.

DEFINITION: Define a G-polphode as a polphode in which

R(K) + R*(N- K) 0 O. (16a)

eral.
This is actually a generalization of Eq. (16). Notice that R (K) can be a complex number in gen-

As an example, examine the generalized Barker code 4 [3]:

11 -1 j
4,1: 0 n1~2 -r ir12

S) = [-El e-fi | | 1 je-j2*- e-X40 + i e-j6o|

f At f -t I r1
S*() = |-ti ej' I j1 2-1 ej4* -jej6J

and

ISl) 12 4N= J 2 [1 4 + 2 sin 2f + 2 sin 6J]

corresponding to the values of the autocorrelation function:

R (K = 0) = 4, R (K =)= j, R (K=2) = 0, R (K = 3) = j.

We clearly see that Eq. (16a) is fulfilled, which means that the above code is a G-polphode.

SYNTHESIS ATTEMPT

(19a)

(19b)

(20)

With the above analysis we now try to synthesize the Barker type autocorrelation function for
even-length (N = j2) codes, Barker and G-polphode.

7
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Barker Code

Suppose there exists an even-length Barker code x1, x2, .. ., ~. xi is either +1 or -1.

The autocorrelation function of the code must be as illustrated in Fig. 6.

The match point R (K = 0) - N appears. The nearest and furthest sidelobes must appear with
magnitude I and opposite signs (corresponding to cos 2tP and cos (N - 1) 24; terms of the power spec-
trumr). In Fig. 6 we plotted arbitrarily one of the two possibilities for these sidelobes. At the midpoint

RIK = 1= 0 as explained before. The dotted sidelobes in the figure might or might not appear,

But if one dotted sidelobe (say of index K) appears, there will be a corresponding "image sidetobe. (of
index N - K) with the opposite sign, as required by Eq. (16). Of course, there will be another two
sidelobes on the other side of the match point (negative r)..

R(rcl

N

Zipt/\\\/\'1 ,:(N-It

-(N-Il -NI N -¶ 1 *' N'1 t N-i

2 -1V 
Fig. 6 - Autocorrelation function of even-length Barker codes (generally)

Now, from looking at the desired R (r) in Fig. 6, we can determine the structure of the power
spectrum:

[S)= [ 2 1 [sin

{N±2 csfk ± 2 cos 4; ± + o 2 cos 2N 2s ... 2 cos (N-2)2+ 2 os (N - )2.

must appear

The spectrum S(f) of the code is given by Eq. (10). The magnitude of SV) must equat the
square root of the power spectrum IS(f)12 at every point tft (f; was defined in Eq. (9) and represents;
the frequency variable). Specifically, at the N sampling points

4;= 0 f = i/ f r = 2wr/N, I.V= t/IN. 4 . = (N- ri/N

[1=~~~~~~~r N5-iJ -t . Rf1/ 

8 .. ff 2ff
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we must have:

IS() I

1 - i-
N

=I-qj= N

This is a necessary condition for the existence of even-length Barker codes, but might not be a
sufficient condition. Actually, Eq. (22) gives us a set of Nequations that must be fulfilled.

(22)

Note that in Eq. (21):

cos 2 0 = cos (N - 1) 2 0
for r = O cos 4 O = cos (N -2) 2 0

cos 6 -O-tl cos (N- 3) 2 0
etc.

for 4; 7r/N

for ; = in/1N

or generally:

cos 2 r/N = cos (N - 1) 21n/N
cos 4 nT/N - cos (N - 2) 2nT/N
cos 6 nr/N cos (N - 3) 2nr/N
etc.

cos 2 bi7r/N = cos (N - 1) 2 i1/N
cos 4 int/N - cos (N - 2) 2 ir/N
cos 6 i7r/N = cos (N - 3) 2 ir/N
etc.

cosK -2 in/N = cos (N - K) 2 *in/N. (23)

This means that the power spectrum at the N sampling points 4, = irn/N (i = 0, 1, ... , N - 1), is
(see Eqs. (16), (21)):

ISV)12 Nr21 s f .I N+0+0+...+o
tit
N

(24)

" _-
N

i.e., the power spectrum samples at * = inr/N (i 0, 1, ... , N - 1) must be some constant N 4N2

times (sin 4t;/q,4)2

lrg

length TfIA.

(the last term was interpreted as the contribution of the basic code element

Now the spectrum in those Nsampling points (see Eq. (10)) is:

8(f) 2N= [ e { es |s'1 ejoj + e .e2
Iir i7T

N N

+ e<45 e4' 3 + + eJ(N-1) NeON

9

(25)

_ -,,rl S �(f ) 11
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Denote
2w

e hT= W

(this is the known basic phasor of DFT where WI = 1).

8(f)| = [-i {r [sin eJ J I [ n [I e' + Wlej2 + W2 eJ"3 + ... + W(N-I)E

N N

and requiring (22) results lll Nequations.

i e t| JI j 1: I e+3 . .. * I1 e IN= VN = I

i =l- 15 | ~1 . 1 + W- el'2 * Wy2 e13 + .. + + WIV- ey[= 1-f- - I

J = 2: 1. |seJ~ + Wy2 e302 + W4 eJ03 t . + WN-2 ejANr| I l ,N 

i = NI-1: |1 .es" + WN-l eZ + WN-2 e/ + .-. + We'Nf=-N - I

and in matrix notation:

I

I

I

I

I

w
WI

1

w 2

I... w 1
... W#r--

WN-I WN-2_ w

e42

e'N

efON

ILI

'L5_M

Going from Eq. (28) to Eq, (29), we had to take care of the absolute value in the left side of
(28), by placing some unknown phases a1 in the right side of (29) for each element whose magnitude
should be exactly I = J.

We can write Eq. (29) as:

A X=V (Oa
where A is the known DFT matrix (N x N matrix), which is nonsingular with det A • 0.

10
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The phasor Wis on. the unit circle (see Fig. 7).

XI e

X3

is our unknown vector, which represents the required Barker code (x-i 1, +; is either 0 or ar).

I/a3

//a 2 V2

1/a V3

V = . = is a vector whose

1/ayj VN

elements have magnitude I = -aW, with unknown phases aj.

COMMENTS

(1) Equations (29) are exact necessary conditions.

(2) Equations (29) hold only for even-length codes N = 12. A similar analysis for Barker codes 5, 7,
11, and 13 shows that the spectrum samples (of the sequence) are not required to have a constant
magnitude.

IMAG.

REAL

Fig. 7 - The basic DFT phasor oW on the unit circle

11
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G-polphode

A similar analysis for the G-polphode, where Eq. (16a) is fulfilled, will give us the same result.
For any time sidelobe R (K) there will be a corresponding R (N - K) time sidelobe such tat,

R(K) + R*(N- K) = 0
or equivalently: Real 1R (K + Real [R (N - K)1 = 0

I: ::R(WI - Im[R (N - K)M = 0.

This means that the pair of sidelobes R (K) and 2 (N - K) contribute to the power spectrum: 

2 Reat F[R(KJ (cos K*2i-cos (y- - Al IT+ (tki faitK .V* + sin -L K)2" ;A

This contribution of the pair goes to zero for the N sampling points ; in / N, since

cos K 2 = cos (N - K) 2 l|T

N ~~~~~~N j ~~~~~~(30) 1

sin K *2=L = in ( - K) 2 h |
N N

thus resulting in

Is8(f1 =42 11 1 + 0+0+ T2[iG.I

as before.

So Eqs. (29) and (29a) hold also for G-polphodes. but the code elements can be any complex
number with unity magnitude [xi 1.

Thus, from now on we can proceed with a a sequence of numbers XI (real for Barker and complex
for G-polphode) which when DFT transformed (Eq. (29)), gives a vector with constant magnitude ele
ments I = @i- 

We will examine first Barker codes.

BARKER CODE STRUCTURE AND PROPERTIES

To derive several properties of an even-length Barker code (if it exists); we write the mapping Eq.
(29) in a convenient form:

XI + Il + * X2 + 1X + I1 X4 + .+ XN =3A)
lX1 i + W x2 + W2 x3 + W3 x4 + .+ WN-1 XX 1a2 (31..1

I- 1 -XI W 2 X2 + W4 X3 + W x4 +... + W2 N X i1a 3 (31.31

12
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1 *X1 - 1 *X2 + 1 ' - 1 X4 + * XN = 1/apN2+ I (31.N/2+1)

1 * XI + WN-2. x2 + WNV 4 *X3 + WN 6 * x4 + . . .+ W2 * XV = l/aI O(31.N-1)

1 'X 1 + W' ' X2 + WN-2. X3 + W- 3. X4 +.+ W+XN = I (31.N)

From Eq. (31.1): since xi is real (± 1), a1 must be 0 or ir, so that:

Xl + X2 + X3+ .. .+ XjIj = i1,
i.e.,

number of pluses - number of minuses = 1. (32)

But since their sum is N = 12; then:

CASE 1: if number of pluses = 12 1 then number of minuses = 12

(e.g., Barkers + + -+ and + + +-)

CASE 2: if number of pluses = -1-I then number of minuses 2

(e.g., Barkers + --- and - + - -)

For simplicity we'll discuss only Case 1 in the following few paragraphs (Case 2 is the "opposite" case).

Note that the difference between the number of pluses and minuses gets larger as the code length
increases, which is not the case in PN binary sequences.

From Eq. 31.N2+1): again apN12+ must be 0 or n, and:

XiT- X2 + X3 - X4 + ...- + XrV-1XNV = +L. (33)

Odd pluses and even minuses contribute positive numbers in Eq. (33), while even pluses and odd
minuses contribute negative numbers.

Denote:

m = number of odd pluses, then I m = number of even pluses
2

n = number of odd minuses, then 12 - n number of even minuses
2

From Eq. (33):

m + f I - nj - 2 ml + = +/

2 (m - n) - I I

13
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We have two possibilities:

(A) m = n, but since m + n = T (number of all the odd elements), we get:

number of odd pluses = number of odd minuses T

(e.g., Barker + + - +

(B) m - n = i, this implies similarly that:

number of even pluses = number of even minuses =

(34>. 1

(34.)

(e.g., Barker + + + -}

From Eqs. O.2) and W1.A: each weight of the real code elements (xi = ±1) in Eq. (31.2) is the
complex conjugate of the corresponding weight in (31.N), e.g., W- = WN-', (W2 W-2. etc., so
that 1/a2 must be the complex conjugate of IŽN, or:

aN = -a 2.- (35.1)

Similarly:

aN-. = -a3 (35.2)

(35.3aN-2 = -a 4

(35.4)ctmI2 + 2 --api 0

These equations say that for real codes, Eqs. (29) take the form:

A

.XI

X2

.I

it'

1/a

1/0 oai

1/-a2

(36)

14
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From Eqs. (31.1) and (1N12+1): by adding and subtracting, we get (taking into account Eq.
(36)):

I.'
U

(37a)2(Xx + X3 + X5 + X7 + ... + xN-I) = or

I

2(x2 + X4 + X6 + X8 + ... + Xy) = or
0

which are another form of Eq. (34).

Further properties of Barker codes can be derived if one can follow the requirements logically. As
an example, consider the (N/4+1) which is a member of Eq. 31, and its conjugate. With property (36)
in mind (note that these two equations give ± 90° shift in the weight from each code element to
another), we get:

1 -X iX2-X3 +JX4+ 1 IX5 -jx 6-1 iX7 +Ai8 + ±*. = 1LBy. (38.1)

and

1 eXl+JX2= 1 X3 5X + 1 +JX6 -1 * X2 -JX8 + *.. = l S - (38.2)

By adding and subtracting we get

(39.1)

and

(39.2)

or

(40.1)

and

(40.2)

(37b)

Equations (40) can be fulfilled simultanously for a few possibilities of the angle 18, since their left
side is an integer (with plus or minus sign). Actually, if lid 5p (not multiple of 5), the only values for
(3 are 0, ± 90', + 1800, which result in an integer on the right side of Eqs. (40.1) and (40.2). If
1 = 5p (multiple of 5), there are other possibilities to get an integer in the right side, since
cos ,3 = 3/5 or cos ja = 4/5 results in sin ,3 = 4/5 or sin 13 = 3/5, which means we have another "fam-
ily" of possibilities that can fulfill Eqs. (40). Actually, they are all the possible combinations of + 3/5,
+ 4/5 for the cos (, sin hof Eqs. (40).

Another important observation is derived by adding all the equations of (21). Then in the left
side, all the code elements, except X1 , will cancel (because the weights are uniformly distributed pha-
sors in the unity circle of the complex plane), resulting in:

12X2I= i/a+ 1 2X+ 1a 3+... + laN,

15
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and since we can assume X1 = 1,

(41>

which means that all the 12 phasors in the right side of (31) or (36), whose magnitudes are A and which
appear in pairs of complex conjugates, must sum to 12. This means also that one possible choice of the
phasor's vector in the right side of (31) is the code itself X times 1. In such a case, the right side of
(31) is:

(42>

as required by (41).

All the above properties ((31) through (42)) can be utilized to reduce the search for even-length
Barker codes.

PHYSICAL INTERPRETATION FOR BARKER CODES

We can examine now the physical meaning of Eq. (36>, as illustrated in Fig. 8. We need to- input
the real code x(± 1) to a BET system, such that we get a constant amplitude I in the output, while the
phases of the output must fulfill some constraints.

X2N*

DFT

(N -=2

POINTS)

n

II :s

I E No- Ja2.

- . I I aS

. t/&OR f

-0 I L-az

REAL

XN

Vi = hi L

N

OVNR = t 

I /H OROG

IMAG.

TIME DOMAIN FREGUENCY DOMAIN

Fig. 8 - Physical meaning of Eq. (361: the DPI of the real sequence X, gives constant magnitude phasors

16
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I-- � --- - -
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bc, + lx2+ ... + IXN= I(XI +X2+ --- +Xd� I' t= t'
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Now we'll see how the Barker codes for N = 4 (1 = 2) are derived by the above analysis (see Fig.
9).

W e-i 2w/vN = e-j 2r/4-j

1 1 1 1 '1 1 1 1

1 W W2 W3 1 -j-1
A= 1W2 W4 = 1-I 1-1 

i W3 t6 &j _ 1 -

We need:

[ I 12/0 1

A X j 2L |

X4 2/-a

We see from Fig. 9 that C1 only can create the dc-frequency term 2 /, C2 only can create the
fundamental frequency 2 /a, etc. Thus the required code C is a linear combination of Ct, C2, C3, C4

.-in the time domain). Tr-we an find a cde CAll of whose elements are of unity magnitude. then it is
the required code (note that C3 has two possibilities).

Cl:

C2 :

C 3 :

C4 :

1 1/2 1 1/2 1 1/2 1 1/2

1/2 1 -j 1/2 1 I - 1 /2 /a I +i I/
1/2 -1/2 1/2 -1/2

-1/2 1/2 -1/2 1/2
1/2 / -e . .1/2j- La 1- /2 f +j 1/2 

C: Xi X 2 A X4

We have only one parameter (a) to choose in order to have the required code, all of whose elements
must have unity magnitude. We see that if C3 ® is examined, a must be +900 or -90° (from the first
column, in order to have xl = 1), so the code is:

C: XI = 1, X2 1, x3 = 1, x4 -1 for a = 90°

C: x = 1, x2 =-1, x3 = 1, x4 = 1 fora = -90'

and if C3 ® is examined, a must be 00 or 180°:

C: X= 1, X2=1, x3 =-1, x4 = I fora= 0°

C: X= -1, x2 = 1, x3 = 1, x4 = I for a = 180°

Ail tie above codes C are legitimate naker codes which fujfill all ihe requirements. Here four IV =
4, we had only parameter a to choose, but when N is large, we have many parameters to choose, such
that all the elements in C will add up to unity.

A pictorial interpretation of the requirement established by (36) is illustrated in Fig. 10 (only for
Barker codes) for three elements of the vector matrix described by that equation.

17
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DC TERM

A=>

FUNDAMENTAL TERM

'A a&,+

Fig. 9 - Derivation of Barker code 4 by physical interpretation
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IMAG.

PLUSES

REAL

-e

Fig. 10 - Pictorial interpretation of Eq. (36)

LINEAR ALGEBRA POINT OF VIEW

We now analyze our problem for either Barker codes or G-polphodes. Equation (29), which is a
necessary condition for both of them, can be written as:

A X=
'La2

or:

I A

1

1

= I

=1

1

12I /e'

/a2I

La2

19
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Define:

I

which is a modified DEF matrix (each element in A is divided by I in order to get B.

(43> ..

Then:

B X= Y
where Y is the vector:

(44>

(44aY

Equation (44) requires the code vector X to map' to vector Y (unity magnitude elernents> through
the modified DPI matrix B.

This can happen in two ways:

1. The vector Yis some scalar A (might be complex) times X Then:

BX=AX(

We will call this case an eigenvector mapping code (we have mentioned this possibility for Barker
codes after (41))

2. Y•X AX (46>

We will call this case a noneigenvector mapping code.

In order to investigate the eigenvector mapping case,
(over the complex field).

Writing (44) in detail, we get:

I I

I I

I -W

I I

I I

I I

I W'- 1

I I

I

I

FflI

I

wN-4

I
.W-2

I 

-I

IWN-2

IHN-2

WI
..Wv

we will use some properties of the matrix B

-XI

x 2

XN-I

X. ' j

it

Y2

13

YN-l

Ypf

(47> -

where IxI = 1, I YI = I = 1,2, ... , N.

20
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PROPER TIES OF B

a. The columns (or rows) of Bare orthonormal.

(v)(VD - |1 = , _ (48)

where V. denotes the Ah column vector (note that this is the definition over the complex field, as a gen-
eralization of orthonormality over the real field).

b. B is symmetric:

B = BT. (49)

Also, its rows (except the first and (N/2 + i)Wh) are pairs of complex conjugates, e.g., the NMh row
is the complex conjugate of the 2nd row, the (N - 0h row is the complex conjugate of the 3rd row, etc.

c. B is a unitary matrix (this is the complex generalization of an orthogonal matrix over the real
field, where A is an orthogonal matrix if AA IT 1), which is defined by:

B(B*)P'= 1. (50)

or equivalently:

B-1 (B*T (50a)

and in our Case- due to (49):

(51)

From (47), (51):

VY= Ra* y (<'f

d. Idet BI = 1 (53)

for any unitary matrix (see [4), p. 112), which means that Bis a nonsingular matrix of rank N.

e. All the N eigenvalues of B (as a unitary matrix) are of unity magnitude (see [41 p. 155, prob.
22);

fAR|= 1 i= 1, 2, ..., N. (54)

It can be verified that in our case, at least A1 = 1, A2 = -1 are eigenvalues of B, possibly with
some multiplicity. To show this:

|K1 #A 1 . _

W WI

'7 -AI ...I WI W4 A

IB - x 1. (55)

WV'-I WV-2 W I

21
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::. .::. :: A~dding all the rows of (55) to the last row we get:

L -h l~~~~~~~~~1

FHON GABRAY

- X A
I

I
I

IB - t = I.

I-X -X .. -X

This last determinant is zero for X1 = I and Xz = -1 (since for both of them we get two proper-
tional rows in the determinant).

f. B, as a unitary matrix, maps any vecor X to vector Y such that their energies are the sam
(mathematicians call this property preservation of length) i.e.:

XI X*+ X2 X; + -X +4 = -t 1 i1 +
Y2Y Y + ... + YN. 4 (57>

Note, however, that if 1x1I = I (unity magnitude code) Y1 generally are not necessarily of unity
magnitude. Our problem is to find that Ixi 1 that will map to i Y,1 1, and, of course, it is possible
from an energy point of view.

As an example, check the case I - 2 (N 4):

2 . 2 2 2

B = 1 1 1 1

2 2 2 2

If the code is an .eigenvector of B, then, BX = AX 

The eigenvalues are, A1 - +1, A2 - +1 A3 = -1, A4 =-i

so that:

det [B - XII - (X - 1) (A -1) (x + 1> (x -j}.

Note that indeed 1X1I = I and Idet RI - II- 1 (when substituting A = Gin (5S0.

The eigenvectors are:

I. for XI = A2 = I we have two eigenvectors:

0 0 0

(B- I) V 2 0 I O -1 -2 Z = O

( V1 0 -1

22
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V1 is a Barker code, while •2 is not. Actually, any linear combination of .Y and V2 that has
constant amplitude is also a good solution (in our case only V1 and -J" are Barker codes).

2. forX3 =-1,

(B +I) Y= O 0 10 e0,

(B±I)~ v=a~l o+2

1-11

V3 I ;

1•3= 

V3 is the eigenvector Barker code (of course, -V 3 is also a good solution).

3. for X4 -j,

0 1 1 1

(B+ j) V=o- 0 1 0 I0 1

10 011

[1
The eigenvector V4 is not a Barker code. Now we will prove that for the eigenvector mapping
M - AX, only A - +1, A -1 can give us a legitimate Barker code or G-polphode (where [Xi = 1).

For an eigenvector mapping we require

I I I I~~X X
1 W WI 2

I 1 X2 X2

1 H'2
U,4 ... 3 X

(59)

ji ~~7 ~72 [xAIJ [XNJ

23
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From the first row:

7 (Xl + X2 + . .......... t +XN)=XXI- Axl. .......(60

From summing all the Eqs. in (59) we get:

(- X +I XI+...+x 1 XI) +0 .xX2+0.X 3 + +0 xX=X(x 1 +X2 +...±x+X> (61)I 

From (60) and (61):

Z2 E lS xt = X - X &J, (62)

or

XI A2 xI. (62a)

Equation (62a) can be fulfilled only if:

a. xi = 0, which will not give a Barker code or G-polphode (requires [xi = 1,

b. 2 = I or,

x = ± 1, (63>

which might give a Barker code or a G-polphode.

Thus, an eigenvector code can be achieved only for the eigenvalues A = ± 1.

The other complex eigenvalues [X I = I will not give a desired code (we saw it in the example for
I = 2, where X4 =-j did not give a Barker code, and, indeed, the first element of the eigenvector V4
was XI = 0).

Now we norve that an eigenvector mannine does not have a solution for a Barker code
(x= ± i) for I > 2.

If X = (XI, X2, . xyv)is real then the eigenvector possibilities are:

forX =1 : BX= I X and, (Ma)

for X =-1: BX =-1 X. (64h4

Before proceeding with the proof, it will help to observe the case I = 2.

a. BX = 1 * X gives the eigenvector Barker codes
xi = (± + - +,

-x= (-- +-Fl
b. BX = -1 Xgives the elgenvector Barker codes

V2= (-±+ + +)T

Y•2= (-__)T
But note that V3 = (± - + +)T and -•3 - (- ± - -)T are not eigenvectors of B, though they

are Barker codes, which are obviously 'symmetrical" to the above •i and -II. For example,

24
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I I I 1

2 2 2 2BV=K -j I 1 I 1 f

•3 is not an eigenvector though it is a Barker code. Similarly, •4 -= (+ + + -) T and
-V 4 = (- - - +) T (which are symmetrical to the above •2 and -•2) are Barker codes but not eigen-
vectors of B. This happens because of the general requirement that a real eigenvector must obev the
following structure (for A = ± 1}:

x 2 X

X 3 X

B . =A . (65)

XN 2

This was explained in Eq. (36) and Fig. 10, for a real code X But if xi is real (± 1), then xi =xl,

so that Eq. (65) requires:

XN- X; = X2,

XN I = X3 = X3,

XN-2 5 X4 X4 etc (66)

We see that ZI, -lI, V2, -V 2 above fulfill this requirement (X2 = X4 ), and therefore can be real
eigenvectors. On the other hand, •3, -Z3, •4, -4 do not fulfill (66) (since X4 =-X2), and there-
fore cannot be eigenvectors.

Now to proceed with the proof, the next candidate for our problem is I = 4 (N - 16).

According to the above analysis, for the real eigenvector mapping, the code structure must fulfill
Eq. (66). Thus, the eigenvector code must be:

CODE: X1 X2 X3 X4 X 5 X 6 ... X6 X5 X4 X3 x 2

ELEMENT NO. 1 2 3 4 5 6 ... N-4 N-3 N-2 N-1 N

where x, is either 1 or -1 (note that the above VI, - VI, V2, - V2, fulfill this structure).

To show that this is impossible for I > 2, we return to the time domain autocorrelation process
by steps.

FIRST STEP

... X5 X4 X3 X2

Xl X2 X3 ...

XI, X2 can be ± 1, so that R (N - 1) = ± 1.

25
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SECOND STEP

XS X4 X3 X2

Xi X2 X3 X4 XS...

R (N - 2) = x2 X2 + x1 'X3= + XI *X3-

Since R (K) is allowed to be 0 or ± 1, it follows that X3 =-xl

THIRD STEP

-- X6 X3 X4 -XI X2

X1 X2 -XI X4 X 5 ...
R (N - 3) = xi (x4 - 2x2 ) SO that X4 X2 .

FORTH STEP

-X, X5 X2 -Xl X2

XI X2 -XI X2 X 5 ...
n/A I s\ 4, - _ - . -_ _ . -- _ L .

tv -r .2A2 'x 2 + A l xAl x 2 X 2 x1 Al5 .- -r Al' A5

No xi, x5 (which are ± 1) can give the desired autocorrelation function (O or + 1), thus proving that no
real eigenvector code exists for I > 2.

By now, we see that the remaining possibilities to meet:

BX= Y (68)

[Lxi= I, [I 1-

are:

1. Barker code (real),, xi = 1:

B

[XI

.X2

KX3I t

XN

Y1

Y2

Y3

Y;

(681)

where Y 3if x X (not an eigenvector)
(40).

for 1 > 2. This possibility has to meet properties (32> through

2. G-polphode:

a. B X = ± 1 K eigenvector mapping. (See the appendix for further properties in this case.) (68.2>

b. noneigenvector mapping, _• A XK

As an example of possibility 2.b, consider the specific polphodes that are given by the generalized
Barker codes [31. These are derived from a 'father' Barker code Se by:

(691)xi= (xi) 0 eJ(-t)C.

where 8 is some angle 2 1r/P (Pis an integer).

26
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It is actually the addition to each element (x,) 8 , of a progressing phase step (o can be further gen-
eralized). This modification does not change the envelope of the autocorrelation function.

Thus, all the codes defined by (69) form polphodes, some of them are G-polphodes.

Examples for N = 4:

1.

XB =

B =

1
I1 e- go,

-1

1 1
2 2

2 2

I 1

2 2

L i
2 2

X= -1

1

2

.1

1

2

1

2I

2

-I

_T

I 1
=1 = -'1
i I

We see that X is not an- eigenvector,
required by (16a).

but it is a G-polphode since; R (3) = j, R (1) - j, as

1 1

1 -ae, b
I

1 _

K is not an eigenvector, but it is a G-polphode since, R (3) = j, R (1) - j.

3.

BX =

1 1

2 2 -45 1 /45

I _> 1 - I- 4 oJ

11 _ L45 I
2 2 2 2 1

l-j -1£
-2 2 2 21/5
1 1 11 1 !0 
2 22 2

- + -J~cos45S
;2 2
i - I J+sin 45'

7-+ I j - cos 45'

-2

27
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X is a polphode, but not a G-polphode since the autocorrelation funtion is,
RW) = 4, R(1) = 1 /45t R(2) = 0, R(3) = 1 /-45 '% and R(1) + R(3) • 0, in contrast to Eq.
(16al. Note also that the riht side of Pn. (7(l dnAnat have rnnstAnrt anpnnlitude P.enpmnts This last

example shows that there might be polphodes that are not Gpolphodes, thus our analysis does not
cover them.

At this point, we review our results as shown in Fig. It. A question mark denotes codes that
were not investigated in this paper.

CODES

? BARKER TYPE AUTOCORRELATIOW FUNCTION

REAL MBARKER1

Xi -

ODD LENGTH EVEN LENGTH

BARKERS
XS, 5, Itt~ 3 t 

N=2 N atz N*1 2

[+-] ~ ~r~POSSFbLE

N'4 2e>2
1-2 BX YO 1X

1+ x NO-4-£EIGENVECTOR.
r f] 13 THPROPERTUES

L++ 321 THROUGH (401

PO LPNOES

ODD LENGTH EVEN LENGTH

-REM

N*1 2 N=12

7'r
G-POLPHODES NOT G-POLPHOES

ELGENVECTOR CODE NON-EIGENVECTOR

IL4_ y~CODE

tz#2

I .1

JCED SEARCH PROBLEM

Fig. 1 -Rview ofresults; a que Arkonnt-o nAnt that were ant kinvetnatn4 in tka- pr

Z-TRANSFORM INTERPRETATION

Further insight into the problem of generating a code is achieved by using the Z-transform. Basi-
cally, we need a sequence xi=([xi IJ i = 1, 2, .. ,, N, where N = 12) such that its DFT will have
constant magnitude.

'r1- nL- OfU' - \ - -- 1 Ar ; ;T . . \tA1 f' *U ';7 f A_ ; & _ -_A in, ts. A I l aN-'q9utit4~l IN 5iYUi11 LP J 11?&ipii IULLLLO Ul tin, Z,-LtavUta . j11jg WIfLYj& p.LLLzka

are uniformly distributed on the unity circle of the Z-plane (see Fig. 12).
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Z PLANE

K X SAMPLING POINTS.

Fig. 12 - The DFT of a sequence is given by N sampling points (uniformly

distributed on the unity circle) of the Z-transform

The Z-transform of the sequence Xl, X2, .. , XN is:

X(Z) = XI + X2Z'I + X3Z 2 + ... + XXZ (N-1) (71)

XI ZN1 + X2 ZN1X + .. .+ XJ- IZ + XN
zN-I

Then:

[DFT of x] = X(Z) = X(K) (72)

Z -w

where WH' eci2w/fI K = 0, 1, . N- 1.

We see in (71), that X(Z) has N -1 poles at the origin (Z = 0). and N - 1 zeroes that depend
on the sequence xi.

If the xi's are real (±f 1), the roots of the polynomial in (71) are either real or complex conjugates
in pairs.

Since N is even, N - I is odd, so that out of the N - 1 zeroes of X(Z) there will be an even
number of complex conjugate zeroes and an odd number of real zeroes.

Thusq Y(Z) for a real senqience x. can he factored to the form

X{Z = I (Z - Z) (Z Z2) (Z -Z 3) ... (Z Z4) (Z 4.. (Z-Z5(Z-Z;) (73)
NN-

odd number of real zeroes pairs of complex coniuzate zeroes

Since we are interested in the magnitude of the DFT of the sequence at Z = WK- e-j2rK=x
where K = 0. ... , N -1, we can ignore the (N - 1) poles at the origin (they do not affect the magni-
tude of X(K)).
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As an example, examine a Barker code of length 4:

XI = I X2 - 1 X3 ='-1 X4 = 1

X(Z) = I + Z-1 _ Z2 + Z_3= Z3 +Z 2_Z+1 (Z - ZI)(Z - Z2}(Z - Z3) (741
z3 Z3

Carrying out the factorization we get:

Th val1 re cal ed -aoim a 7l nfr 4th s o il ion (e Fg = 7.

Those values are calculated approximately for the sake of illustration (see Fig. 13X.

z1 -.. Bl4

Z PLANE

Fn

Fig. 13 - Poles and zeroes of the Z-transform for Barker code 4.
A, B, C, D are sampling points of the Z-transform.

The sampling points of X(Z) are A, B, C, D. When X(Z) is evaluated
the DEC X(K) of the sequence.

at those points, we get

As a geometrical interpretation, we see that the exact values of Z1, Z2,, 4 present an exact "sym-
metry" towards the sampling points A, B, C, D, in the sense that the product of the magnitudes of the
three phasors (from the sampling point to the zeroes Z1, Z2, 73) gives exactly the value 2, for each
sampling point. In Fig. 13, we sketched the three phasors for the sampling point B.

For point B:

I - Zt) (J-P2) (- Z3 )I= [atIla2Ii aa3I=2. (75.1)

For point A:

[1l - Z1) (1 - Z2) (1 - Z3)1 = 2, (75.2>

and similarly for points C and D.

This property (75) is evident when looking at the Z transform:

X(Z) = I + Z-1 - Z-2 + Z-3' (761

and substituting directly the sampling points A, B, C, D. But from a geometric point of view, it is a
rare combination of the zeroes of X(Z), that present such a "nice" symmetry.
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Notice, however, that these specific zeroes of Barker code 4 (ZI, Z2, Z3) do not present the
above symmetry towards any number of uniformly distributed sampling points on the unity circle. For
example, for eight uniformly distributed sampling points, one of them will be Z = eJ"/4, and substitut-
ing it in (76):

IX(Z = eir/4)1 - 11 + e-Jr/4 -e-ir 2 ± e-J3 r 41 • 2,

which means that these specific zeroes of Barker code 4 cannot be "used" for generating higher length
codes.

Of course, the same analysis holds for a complex sequence Ixi = 1, except that the N - 1 zeroes
of X(Z) will not be in conjugate pairs. But again for a G-polphode, these N - 1 zeroes of X(Z) are
required to present the above "symmetry" towards the Nsampling points Z - We.

One might suspect that some uniform distribution of the zeroes of X(Z) will give the desired
symmetry.' A moment of reflection shows that it is impossible since we have N - 1 zeroes of X(Z)
and Nsampling points.

This means that if there is a solution, the zeroes of X(Z) will be distributed on the Z plane in
some "rare' combination (and, of course, not on the unity circle).

Beyond the above "symmetry" these N - I zeroes of X(Z) must fulfill other requirements.

Suppose we found some "symmetric" structure (in the above sense) of the zeroes, Zl, Z2, .
Ze,V-I.

Then:

X(~~~~~~~~~~ZN.) =xI, 2 z Z-1)X + X2 zN- + *-+ XNX(Z)- (Z-Zd) (Z -Z 2) ... (Z- N I~v+ 2 %~+.+r MY7
ZN-1 ZN-1

K(Z) ZN-I j - (-Zl) (-Z2) ... (-Z-l) = XK (78)
z - 0

i.e.;

IZI Z2 iZN-11 = 1, (78.1)

which means that some of the zeroes are outside the unity circle while the others are inside, such that
their product has unity magnitude.

Another point to mention is that the necessary condition is "similar" to designing an exact all pass
discrete filter whose finite impulse response is h (n) I X1,X2, . .. , x", where IxiI = 1.

In Ref. 5, it is shown that an all-pass discrete filter has a Z transform that factors to terms of the
form:

HIZW = I1- a-1 Z-1' (79)

1-a Z-1
where 0 < a < 1 (a is real), such that the pole and the zero in (79) give a constant amplitude for
every frequency. This is actually more than we need, since our requirement is to have constant ampli-
tude I only in the N sampling points of XKZ). But, of course, in our problem, since we have a finite
length, we don't have poles of X(Z) (except those in the origin), and we cannot get terms of the form
(79).
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FINAL COMMENTS

1. It is interesting to note that Frank codes of even length meet the requirements of constant
amplitude DLFT, and R(K> +RA' (- K' ) = 0, but still they don't form G-poiphodes. For example,
the Frank code of length N = 16 is:

(deg): 0, ft0 0, ft. 90. 180 -90, 1 0, 180I 0, 180,

17 t 1 [ 15z

>1 12 J /90-1, Lo1
L 01 -w

/2%~ /

1 /901W

I1L-9I09i/180 t

1 q W
1/180 1 9

1/wQn . - WI'

Also,1 it is Pau ti x.rtfy that RC1) + R*(-KV=I b fut clearly eyn.e time sm^ido.be rf the
Frank code are bigger than unity magnitude,

This provides evidence again that our analysis gave necessary conditions, but not sufficient ones.
' Therefore, we have to search for the solution.

Note also that Barker 4 codes are actually a special case of Frank codes. The analysis can help in
searching for structures of either the code sequence xi, or the distribution of the zeroes of X(Z).

2. An issue to be further insvestigateu: Ls it pousuiU1C LO IppruhiU1L LUl LquUlvIUClut 015 MARIaUt
amplitude DFT of the sequence, and thus approach the "Barker level" of the autocorrelation function?
At least intuitively we might think that a constant amplitude DF1C is a "good property.'

The motivation for the analysis was to find a finite length code with Barker type autocorrelation
function beyond the known ones. Though no specific code was found, the analysis derived necessary
recuirements for even-lenath Barker codes and G-nolnhodes These renuirements can reduce the
search problem for the above codes.

The different points of view presented here (time domain, DFE of sequences, the Z-transform
geometrical interpretation, linear algebra) might also suggest structures and properties of good codes,
which only approach the Barker level in the autocorrelation function.
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Appendix

FURTHER PROPERTIES OF AN EIGENVECTOR G-POLPHODE

We have seen that an eigenvector G-polphode must fulfill Eq. (68.2) of the text:

BX =+ 1- X (Al>

Let ,, ' be eigenvectors of B,, which correspond to X = + 1,, =-1 , respectively.

BL a -X (also B#&X=) ' (A.1
ALX=K, (also B4'X, = -Xi) (A.2.2)

From (A.2.1), multiplying both sides by if

BBL -BLX4 B2X -X. (A.)

Similarly, from (A.2.2):

oBe a;= g- Xb _tL (A.4

i.e., X. and XK are also eigenvectors of B2; both correspond to the eigenvalue X = I of B2.

The matrix B2 (N x N matrix) is:

100 0' 001
0 00 011

0O001.. 101W= g + ~~~~~~~~~(KS>

00 1 0 0
001 0 0. 0*

The matrix 02 has N eigenvalues; some of them are A = 1, and the others are A = -1 (by the
way, the eigenvalues A = ± 1 of B map to the eigenvalue A = 1 of B2).

From (A.3), (A.WS): X 

K 3 XN-I K,

K4 K~- 4

B2 =B2 =, = =X= (A.0

XN-2 X 4 KN-2

XN. I K3 .XN-KNM2XI
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i.e.,:

KN = X2, XNK = X3, XN-2 = X4 , etc.

ture:
The same analysis holds for X,, so that if a G-polphode eigenvector exists, it must have the struc-

Xe=I

'1/a2

I./a 3

1 IaU4 + 

id-

Il/a4

1L

I /aI2+

[1 ~
1 /,a,

1 /02

1 /133

1/PN/2+1

1 /f04

1 /13

1 /132

KT-.- r A (A )I I (1 k A nn.HA .ao '
£'UW LLJrLI .\fl..L. Li buy VJ) LLJLL5Qr115w " gem

Be X* =K*,

BB* X = BX* = B' = X'

and similarly,

BXb =-X~b

(A.7.2)

(A.8)

(A.9)

(A.10)

Equations (A.2.l) and (A.9) mean that if K is an eigenvector of B (for X = 1), then X* is also
an eigenvector of B (also for X = i). if Xa is real, then g = X0 (they are identical).

But we look for an eigenvector code Ka (in which 1I1 = 1). We have seen in the text, that such
an X, cannot be real for I > 2. So X., if it exists, is a polyphase code. Therefore, X* is another
(linearly independent to X;) eigenvector code.

Similarly, if Xb is an eigenvector code (for A = -1), then X'a is another (linearly independent)
eigenvector code.

TLo aulmila..LlV, the V1f,'eLLVVLtLL '.J-pJlYVLPUV \I{fL r L.2) Will Iulill.
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4LX -B

LX-=B

1 /az

I /a 3

I [aN)2/1

I /a 3

I /a 2
.I

1 It31/2

1/133

1 /132
1/13

[i Lai[1>2
1/a

1 /apjfl44

1 [a 3

1 2

I '1
t 1/132 .

1 /#3

1 1N2+i

1 /O

1 /02

. AX BgB

BK =0-

0K=

I11 :a
' Sa

1

1 /a

1 L/2+1

]

I

/ 43

I /-a1

1 /-a2

.1

I /-a4

1

I /-f33;

I hiivN1+1

(A11

(A.1

Note that in (A, ), and similarly in (A.12), out of the N equations for L, we have N/2 - I
redundant equations which can be erased; the last equation is identical to the second, the (N -1th
equation is identical to the third, etc. Thus, if we erase the last N/2 - I equations, we are left with
A72 + I equations (some of them are also redundant> that should be solved parametrically for at, aZ,
a3, . . . a Mg2 a M/2+2.1

Since we have parametric relations for the a1 's, we have to choose some of them such that we get
the desired autocorrelation function. This again is a search problem.

Applying the above analysis for N = 16 we get:

B6X =X
Kr=[1/a, l/ / t/" Ia4 I/as I/a6 I/a 7 1/aI 1 9 I/aI /s I/a6 I /aS I /a41 1 3
1 L~r~lŽ
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After solving the N12 + I = 9 equations, we get the parametric relations:

[1 a3 + 1S- + 1 /a7 = 1/2 [I/a, + I ag],
(1 La2 + 1 + 1/a6 + I = [1l /ai 1/as

[1 /a2- I/a- / 1 6+ = [1/-1 /] cos(2 2/l6) ' (A.13)
and

[l /a4 - I /al] 11 [I/a 2 - I/ag) . I COS (2ir/16)
cos (3 2Xr/16)

Since the conjugate code XK is also an eigenvector (also for x = 1), we must have the above four
relations when 1/t is replaced by I /-a. Adding and subtracting equations in the above eight rela-
tions (complex) gives eight real relationsTwith cos al and sin al).

For example, the first equation of (A.13) together with the corresponding one (with IS1
result in:

cos a 3 + COS a5 + cos a-7 = 1/2 (cos al + cos ag),

and

sin a3 + sin as = sin a7 = 1/2 (sin al + sin aR).

A code (of length 16) that satisfies the eight relations is a candidate for eigenvector G-polphode
(has to be verified in the time domain).

Note also that if the structure (A.ll) is a G-polphode, it is required that for any length N:

27r/3 < (a 3 - al) ( 47r/3 ,

since the second step of the autocorrelation process gives:

R (N - 2) -1O + I/a3 - al ,

and its magnitude must be smaller than or equal to one.
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